Search results for "Radio continuum: ISM"

showing 2 items of 2 documents

3D MHD modeling of the expanding remnant of SN 1987A : role of magnetic field and non-thermal radio emission

2018

Aims. We investigate the role played by a pre-supernova (SN) ambient magnetic field on the dynamics of the expanding remnant of SN 1987A and the origin and evolution of the radio emission from the remnant, in particular, during the interaction of the blast wave with the nebula surrounding the SN. Methods. We model the evolution of SN 1987A from the breakout of the shock wave at the stellar surface to the expansion of its remnant through the surrounding nebula by 3D MHD simulations. The model considers the radiative cooling, the deviations from equilibrium of ionization, the deviation from temperature-equilibration between electrons and ions, and a plausible configuration of the pre-SN ambie…

Shock waveH II regionMagnetohydrodynamics (MHD)shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthISM [radio continuum]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Radio spectrumindividual: SN 1987A [supernovae]0103 physical sciencesISM [X-rays]010303 astronomy & astrophysicsBlast waveISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nebulasupernovae: individual: SN 1987A010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and Astrophysicsshock wavesX-rays: ISMMagnetic fieldradio continuum: ISMSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Detailed study of SNR G306.3–0.9 using XMM-Newton and Chandra observations

2016

Aims. We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant (SNR) G306.3-0.9 in detail to obtain constraints on its ionization stage, the progenitor supernova explosion, and the age of the remnant. Methods. We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of G306.3-0.9 in detail. A spatially resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations, available in the archive, were also used to constrain the progenitor supernova and study the environment in which the remnant evol…

Ciencias AstronómicasInfraredCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaISM [Infrared]FOS: Physical sciencesthermal [radiation mechanism]individual objects: SNR G306.3–0.9 [ISM]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line//purl.org/becyt/ford/1 [https]ISM: individual objects: SNR G306.3IonizationISM [X-ray]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]Radio continuum: ISMEjectaSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Infrared: ISM010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicISM: individual objects: SNR G306.3–0.9ISM [Radio continuum]Radiation mechanisms: thermalX-rays: ISMindividual objects: G306.3-0.9 [ISM]Interstellar mediumAstronomíaSupernovathermal [Radiation mechanisms]Space and Planetary ScienceISM; ISM: individual objects: SNR G306.3; ISM: supernova remnants; Radiation mechanisms: thermal; Radio continuum: ISM; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [0.9; Infrared]0.9Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct